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EXECUTIVE SUMMARY 

Passive sensing technologies have emerged to supplement the traffic performance 

measurement recently. One successful is the travel time estimation based on in-vehicle Bluetooth 

Media Access Control (MAC) address capturing and matching at different locations. In this paper, 

we present a novel approach to measuring the traffic performance on highways based on in-vehicle 

Wi-Fi MAC address capturing. While this novel approach shares similarities with the Bluetooth-

based solution, the Wi-Fi sensors can reduce the measuring errors by up to 90% and collect 300% 

more valid travel time samples than the Bluetooth sensors. We also design algorithms to screen 

outliers and estimate dynamic travel times on freeways and arterials respectively. At last, 

experiments in the field are conducted to evaluate the Wi-Fi sensing areas under different antenna 

configurations and cross compare the travel time estimation with Wi-Fi sensors and Bluetooth 

sensors. The findings include the Wi-Fi sensors considerably outperform the Bluetooth sensors in 

capturing MAC address of the passing vehicles, especially in low-traffic areas. 

Key words: Traffic Performance, Travel time estimation, Wi-Fi, Bluetooth, traffic 

performance. 
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Abstract: 

Passive sensing technologies have emerged to supplement the traffic performance measurement 

recently. One successful is the travel time estimation based on in-vehicle Bluetooth Media Access 

Control (MAC) address capturing and matching at different locations. In this paper, we present a 

novel approach to measuring the traffic performance on highways based on in-vehicle Wi-Fi MAC 

address capturing. While this novel approach shares similarities with the Bluetooth-based solution, 

the Wi-Fi sensors can reduce the measuring errors by up to 90% and collect 300% more valid 

travel time samples than the Bluetooth sensors. We also design algorithms to screen outliers and 

estimate dynamic travel times on freeways and arterials respectively. At last, experiments in the 

field are conducted to evaluate the Wi-Fi sensing areas under different antenna configurations and 

cross compare the travel time estimation with Wi-Fi sensors and Bluetooth sensors. The findings 

include the Wi-Fi sensors considerably outperform the Bluetooth sensors in capturing MAC 

address of the passing vehicles, especially in low-traffic areas. 

Key words: Traffic Performance, Travel time estimation, Wi-Fi, Bluetooth, traffic performance 

4 



 

 

 

 

       

     

       

       

    

     

    

   

    

    

  

   

 

    

      

    

     

     

       

      

 

      

    

     

       

  

     

     

Li et al. 

1. Introduction 

The recent mobility report reveals traffic congestion in the U.S. results in nearly five billion hours 

of delay to road users. Together with wasted fuel, congestion results in over $100 billion in waste 

per year (1). As such, it is important to continuously measure and then improve traffic mobility 

and system performance, especially in some hot areas such as congested urban arterials. Traffic 

performance measurement and traffic state estimation replies on data. In the past five decades, the 

inductive loops or other equivalent technologies (e.g., video detection) have been the primary data 

inputs for traffic performance evaluation. Although the inductive loops have been proven reliable 

and effective, they also have several long-standing drawbacks, such as high installation and 

maintenance costs. To mitigate the challenges in the inductive loop technology, multiple novel 

sensing technologies have been adopted in traffic management recently. One successful example 

is the highway travel time estimation based on the captured unique Bluetooth Media Access 

Control (MAC) addresses of passing vehicles and matches them at different locations. Also the 

evaluations of the Bluetooth-based solution have been reported effective in estimating traffic 

performance on arterials (2). 

Although the Bluetooth-based travel time estimation solution is successful in most places, several 

issues have been widely reported due to the physical characteristics of Bluetooth technology. 

Specifically, the Bluetooth-based travel time estimation solution has large timing errors which is 

defined as the travel time from a Bluetooth device’s actual location to the presumed location where 

this device is discovered), reportedly up to 11 seconds, and a too small size of valid travel time 

samples in low-traffic areas. While these issues can be mitigated by enhancing the data processing 

algorithms, it is also desirable to explore alternative sensing technologies to generate data sources 

with better quality. 

In this paper, the authors explore the potential of Wi-Fi MAC address capturing technology and 

its application to traffic performance measurement. Capturing Wi-Fi MAC address has 

increasingly received attentions from academia and companies in different domains. Nowadays, a 

vast majority of personal mobile electronic devices has Wi-Fi capability to communicate based on 

the MAC address standards, IEEE 802 (3). Like Bluetooth, Wi-Fi MAC address is also composed 

of six bytes of globally unique hexadecimal numbers which can hardly be associated with personal 

information and therefore chances of privacy infringements via captured Wi-Fi MAC addresses 
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are low. The major advantages of Wi-Fi MAC capturing over the Bluetooth are that the timing 

error of Wi-Fi MAC address capturing is very small, reportedly less than 1 second (4), and the 

valid sample size is also much bigger than its Bluetooth counterpart under the same conditions. 

These new features of Wi-Fi technology will help to overcome those problems in the Bluetooth-

based solution as well as can possibly generate additional traffic performance measurements. The 

rest of this paper is structured as follows: 

Literature on applying vehicle ID-matching technologies to travel time estimation and applying 

Wi-Fi to various applications. Then the wireless communication protocols of Bluetooth and Wi-

Fi are described and compared. We will also explain why Wi-Fi sensors have superior performance 

to the Bluetooth sensors in capturing MAC addresses. Following that, algorithms to screen outlier 

samples and estimate travel time and queue length along arterials are presented. At last, results of 

several experiments in the field are reported and analyzed. 

2. Comparison of MAC address Capturing between Wi-Fi and Bluetooth Technologies 

The Bluetooth technology was initially intended to connect devices, such as printers or keyboards, 

to computers without cables (5). In order to exchange data between devices, there are two main 

stages for connection establishment. The first stage is called inquiry which allows the master 

inquirer (the road-side Bluetooth sensor in this context) to discover the possible “slave” devices 

(in-vehicle Bluetooth devices in this context) within the sensing area; the second stage is called 

Page in which the master informs the “slave” units regarding its identification status and common 

clock. Then the connection between master and slaves is created for data exchange. Apparently, 

for the Bluetooth MAC address capturing, only the inquiry stage is needed. Whenever an inquiry 

begins, the road-side Bluetooth sensors will first generate 32 distinct hopping frequencies 

according its own clock and General Inquiry Access Code (GIAC) protocol. The 32 distinct 

hopping frequencies are further divided into two subsets of 16 frequencies. Within each subset, 

the master takes 8 frequencies to transit inquiry information (Tx) for 625 microseconds per 

frequency slot and holds the other 8 frequency slots for another 625 microseconds per frequency 

to listen to any responses from in-vehicle Bluetooth devices (Rx). Therefore, it takes about 10 

milliseconds for the roadside Bluetooth device to scan all the 16 frequencies within a subset (16 

*625 microseconds). In order to avoid errors, all hopping frequencies within a subset must be 

inquired or listened 256 times before the road-side Bluetooth sensor hops to the other subset and 

6 



 

 

 

       

    

    

     

   

    

  

 

  

       

  

   

    

  

  

 

    

       

         

 

    

 

   

     

   

  
  

   

    

 

Li et al. 

each subset must be scanned twice to avoid missing any responses from in-vehicle Bluetooth 

devices. As a result, each Bluetooth discovery stage lasts about 10.24 seconds (10 milliseconds 

*256*4). This result has been proven in the past through experiments in the field (6). It is also 

worth pointing out that the maximum number of in-vehicle Bluetooth device discovered by the 

road-side Bluetooth device in each inquiry is seven per the Bluetooth standard, no matter how 

many discoverable Bluetooth devices within the sensing rage. Excessive discovered Bluetooth 

MAC addresses will be randomly abandoned. 

The Wi-Fi (also known as Wireless Fidelity) standard is defined in standard of IEEE 802.11 for 

wireless local area network connections. In IEEE 802.11, the Wi-Fi MAC address is defined for 

access to the wireless physical media (i.e., air). A Wi-Fi device normally needs to exchange its 

MAC address with the Wi-Fi access point (AP) to get the information of that AP or further seek 

authentication and association. In most personal portable devices, the Wi-Fi module is configured 

to continuously transmit its MAC address into the air to search the nearby APs. Note that such 

process is essentially an unencrypted broadcast and those transmitted data packets can be 

completely discovered by the third-party Wi-Fi monitor (e.g., the road-side Wi-Fi sensor) and the 

individual Wi-Fi MAC address can be retrieved as well. 

To compare the performance of MAC address capturing between the Wi-Fi sensors and Bluetooth 

sensors, one should focus on two items: sensors’ timing error and valid sample size because high 

sample bias and low valid sample size are two main obstacles to traffic state estimation 

improvements with the passive sensing technologies. Table 1 shows the comparison between Wi-

Fi-based and Bluetooth-based solutions. Further comparison will be presented in the later sections. 

Table 1 Comparison between Bluetooth and Wi-Fi MAC Address Capturing 

Max Timing Error at One Location 

Max No. of Discovered MAC Addresses 

in Each Discovery Round at One Location 

Matched Sample Rate 

Matched Sample Bias 

Bluetooth Wi-Fi 

±10 seconds ±1 second 

7 unlimited 

Low High 

High Low 
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3. Data Screening Process 

Both Bluetooth and Wi-Fi road-side sensors will generate exactly the same type of data set (i.e., 

road segment travel time samples) and, as shown in Figure 1, valid samples will always be 

contaminated first by the random outliers and sensors’ inherent measuring errors during the 

collection. As such, one main step of data processing is to screen the outliers and reduce the bias 

for the traffic state estimation later. Both Bluetooth and Wi-Fi sensors in essence fall into the 

category of automated vehicle identification technology (AVI). While they are more cost-effective 

than many other similar technologies, they are also more likely to generate measurement errors. 

The measure errors include not only the aforementioned timing errors but also the positioning 

errors, defined as the location difference between a vehicles’ actual location and the presumed 

discovered location near the road-side sensors. In addition, vehicles may also slow down, speed 

up or completely stop between two sensors, creating outlier travel time samples. As such it is 

critical to screen those contaminated data first to minimize the bias of traffic state estimation. 

1 2 3 4 5 6

Good 

Matched  

Samples

Mixed 

with 

outliers

Further 

mixed by 

measure 

error

Raw Data

Screening 

Algorithm

Traffic 

State 

Estimation

Ground Truth Traffic State
Estimated Traffic State
Valid Samples
Outliers
Valid Samples read via equipment
Outliers read via equipment

Legend

FIGURE 1 A generic process of traffic statement estimation via traffic sensors 

Before describing the proposed screening algorithm, we first review some implemented screening 

algorithms in the past. Haghani et al. used multiple heuristic steps to process Bluetooth-based 

travel time samples. In their method, a set of 24-hour historical travel time samples are first 

processed to identify the travel speed distributions. It is then assumed that all valid travel speed 

samples during a time period would fall into the same average travel speed bins as did the historical 

data. Additional statistical techniques are then applied to further reduce suspicious outliers (7). 

Quayle et al. adopt a moving standard deviation to screen Bluetooth travel time samples falling 

outside of so called “cutoff limits”(2). In another screening algorithm to screen outliers, Boxel et 

al. conduct normality testing on travel time samples. If the data are normally distributed, it imply 
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no outliers. Otherwise, they are considered outliers. If screening outliers was necessary, the stable 

travel speed is first calculated according to traffic density and the Greenshields model. Each 

sample is classified as an outlier (or not), based on its relationship to the stable travel speed, 

calculated using least quartile of squares (8). The screened Bluetooth data set were commonly used 

to estimate travel times and the proposed approaches can be divided into two categories: 

1. Directly estimate the travel time with samples using various statistical models, such as the 

“seemingly unrelated Equations” (SURE) method (9), student distribution estimation(2; 7; 10), 

maximum likelihood estimation (11-13), the least quartile of squares method (8; 14), multiple 

variants of neural networks (15-17) 

2. Bayesian estimation based on Kalman Filter Framework (18; 19) or Dynamic Bayesian 

Networks (20) 

Upper bound and lower bound for valid travel time samples: the first step of data screening is to 

determine the upper bound and lower bound for valid samples given a traffic condition. According 

to the fundamental diagram of traffic flows, travel speed is correlated with the traffic volumes and 

we decide to adopt one of most widely adopted approach, the BPR function (21), to estimate the 

average travel speed under a given traffic volume. Obviously, not all travelers follow this speed in 

practice. Some move fast without meeting any forceful stop (e.g., traffic light) while some move 

slow but are stopped by all traffic control measures. Following the standard in traffic operations 

(22), we assume the 97.5 percentile drivers drive slower than the speed limit plus 10 miles per 

hour (MPH) while the 2.5 percentile of drivers drive faster than the speed limit minus 10 MPH. 

As such, the upper and lower bounds of non-stop travel times can be estimated accordingly. In 

addition, if the travel times are collected along arterials, the longest travel time should be further 

increased due to the control delays at intermediate intersections. Eq. [1~3] describes the travel time 

lower bound and upper bound given the speed limit, link length (and traffic signal timings if on 

arterials). 

Without traffic signal control (Freeways): given road segment length L, free-flow travel speed 𝑢𝑓, 

time-dependent traffic volume 𝑣𝑡, the average travel speed 𝑢𝑑 can be calculated based on the BPR 

function as: 

𝑢𝑑 = 
𝑢𝑓 

𝑣𝑡 
4 (1) 

(1+0.15( ) )
𝑠 
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where s is the saturation rate (vehicles per hour per lane). 

Accordingly, the upper bound 𝑇𝑈𝐵and lower bound 𝑇𝐿𝐵 of the travel time samples are: 

𝐿 𝐿
𝑇𝐿𝐵 = ; 𝑇𝑈𝐵 = (2) 

𝑢𝑑+10 𝑢𝑑−10 

With traffic signal control (arterials): given the number of intersections N, the longest waiting 

time at each intersection 𝑤𝑖 = 𝐶𝑖 − 𝑔𝑖,𝑗 
𝑚𝑖𝑛(𝑖 = 1,2, … , 𝑁) representing a vehicle arrives right after 

𝑚𝑖𝑛 a minimum green expires, where 𝐶𝑖 is the average cycle length at intersection i and 𝑔𝑖,𝑗 is the 

minimum green of signal phase j along the subject link segment. As a result, the upper bound of 

′ travel time along signal-controlled arterials 𝑇𝑈𝐵 are calculated as: 

𝐿′ 𝑇𝑈𝐵 = + ∑𝑖=1,2,…,𝑁 𝑤𝑖 (3) 
𝑢𝑑−10 

Please note that Eq. (1-3) are relatively loose to avoid over screening valid samples. 

4. Travel Time Estimation 

Once the outliers are screened, we can use the remaining valid travel time samples to estimate link 

travel times. Recall that even the valid travel time samples still contain bias due to sensor’s inherent 

measuring errors, it is necessary to pinpoint how the measuring errors are generated. As mentioned 

before, the timing error is the difference between the reported arriving time at road-side Wi-Fi 

sensors and its actual arriving time. The positioning error is the distance from the in-vehicle Wi-

Fi device’s actual location to the road-side Wi-Fi sensor. With a typical smartphone with known 

Wi-Fi MAC address at various distances from the customized road-side Wi-Fi sensor, we examine 

whether the known Wi-Fi MAC address can be captured and how strong the Wi-Fi signal is. It is 

considered that the minimal discoverable Wi-Fi signal strength is -90 dbi or above and therefore 

the location where a Wi-Fi MAC address is captured with the signal strength of -90 dbi is 

considered the sensing boundary of the road-side Wi-Fi sensors. FIG 2 shows the results from our 

field experiments. Three types of Wi-Fi antennas with various gains are used: 0 dbi (terminator), 

1dbi and 5 dbi. From FIG 2, we can clearly tell that the higher gain the Wi-Fi antenna has, the 

larger area the Wi-Fi sensor can cover (i.e., the larger positioning errors) and we summarize the 

maximal positioning error of Wi-Fi MAC capturing with various speed limits and Wi-Fi antenna 

configurations in TABLE 2. 
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FIGURE 2 Signal strengths of Wi-Fi MAC address capturing at various distances 

TABLE 2 Measuring error (in seconds) at one location in Wi-Fi MAC capturing technique 

Wi-Fi Antenna/ 0 dbi 2 dbi 5 dbi 

Speed Limit 

35 MPH 2.2s 3.2s 4.2s 

45 MPH 1.7s 2.5s 3.2s 

55 MPH 1.4s 2.0s 2.6s 

65 MPH 1.2s 1.7s 2.2s 

70 MPH 1.1s 1.6s 2.1s 

Accordingly, the Wi-Fi sensor’s timing error 𝑒𝑡 can be calculated as: 

𝑅𝑖𝑒𝑡 = − 𝑙 (4) 
𝑢𝑗 

where 

Ri: the approximate radius of sensing area of the road-side Wi-Fi sensors under antenna 

configuration i; 
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l: the average latency from when a vehicle enters the sensing zone to when the Wi-Fi sensor 

discovers this vehicle which is reportedly up to one second (4); 

𝑢𝑗: The speed of vehicle j; 

On the other hand, the positioning error 𝑒𝑑 depends on vehicle j’ speed and the radius of Wi-Fi 

sensing area. The maximum positioning error for one discovered vehicle can be calculated as: 

𝑒𝑑 = 𝑅𝑖 − 𝑢𝑗 × 𝑙 (5) 

From Eq. (4-5), the total measuring error is the aggregation of two errors 𝑒𝑡, 𝑒𝑑 and is formulated 

as: 

𝑅𝑖 1
𝑒 = 𝑒𝑡 + 𝑒𝑑 = − 𝑙 + 𝑅𝑖 − 𝑢𝑗 × 𝑙 = 𝑅𝑖 × ( + 1) − (1 + 𝑢𝑗)𝑙 = 𝑓(𝑢𝑗) (6) 

𝑢𝑗 𝑢𝑗 

𝐿 
Substitute 𝑢𝑗 with , we can get Eq. (7) 

𝑡𝑗 

𝑡𝑗 𝐿
𝑒 = 𝑅𝑖 × ( + 1) − (1 + ) 𝑙 = 𝑔(𝑡𝑗) (7) 

𝐿 𝑡𝑗 

where 𝑡𝑗 is the segment travel time of vehicle j. 

Since individual vehicle’s speed (𝑢𝑗) and link travel time (𝑡𝑗) is random, Eq. (6) and (7) indicates 

that the total measuring error is also random and depends on the distribution of vehicle speed u or 

segment travel time t. 

The distribution of u is commonly considered a Gaussian distribution (22) and so t may be modeled 

as an Inverse Gaussian distribution ( ~ ( , )t IG m l ) with probability density function: 

𝜆(𝑡−𝜇)2 

2𝜇2𝑡𝑓(𝑡, 𝜇, 𝜆) = [ 
𝜆 

] ∗ 𝑒 
−

(8) 
2𝜋𝑡3

where: 0( ); 0 (  )mean shape parameterm l> > and they can be estimated as: 

𝑚∑𝑖=1 𝑡𝑖 𝑚
�̂� = ; �̂� = 𝑚 1 1 (9) 

𝑚 ∑𝑖=1 (𝑡𝑖
−

�̂�
) 

where 𝑡𝑖 is one travel time sample (i=1,2,…,m). 
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In Eq. (9), the values of 𝑡𝑖 are on an order of hundreds or even thousands of seconds. Therefore 

will be a relatively large positive number if 

ˆl

2m  . Under this condition, the inverse Gaussian 

distribution can be approximated by the Gaussian distribution 𝛷(µ′, 𝜆′). In other words, travel time 

t can be modeled by a Gaussian distribution with mean travel time and variance estimated as: 

(10) 

In case that sampling period is short or traffic volume is low, likely the number of valid travel time 

samples within a period 𝑘 is small or zero. As a result, travel time estimation during 𝑘 could be 

overwhelmed by individual sample’s randomness. To mitigate this issue, we smooth the samples 

within two consecutive sampling periods, k-1 and k to enhance the estimation accuracy and 

stability, formulated in (11): 

(11) 

Where T is the sampling period (e.g., 900 seconds). 

Eq. (11) imposes that the correlation between period k-1 and k decreases when ΔT gets longer and 

two sampling periods become completely independent if ΔT is an hour or longer. In the meantime, 

the number of valid samples is linearly discounted according to the length of ΔT. If the sample 

size is zero during period k, then the estimated travel time during period k-1 is used as its proxy.  

Based on valid travel time samples and Eq. (7-11), the (Gaussian) distribution of Wi-Fi sensor 

measuring error can be inferred. 

To take full advantage of the knowledge of Wi-Fi sensor’s measuring error, we adopt a Kalman-

Filter-based estimation framework initially proposed by Li and Souleyrette (23). The Kalman filter 

framework is widely used to estimate the true state of a linear dynamic system by minimizing the 

Mean Squared Error (MSE) (24). It is essentially a Bayesian estimating process except that the 

state space of the latent variables and observed variables are continuous and consistent with 

Gaussian distributions. Two steps are taken when a Kalman filter is applied: Predict and Update. 
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The predicting step is to estimate a system’s true state according to its architecture and current 

state while the updating step is to correct the estimated results in the predict step using the observed 

samples (Bayesian). Mathematically, the Kalman filter approach assumes that the true travel time 

𝑡𝑘 during the period k is evolved from the true state 𝑡𝑘−1 of period 𝑘 − 1 according to 

1k k k k k kt F t B u w-= + + (12) 

During the period 𝑘, an observation (travel time sample) kz of travel time is generated with: 

k k k kz H t e= + (13) 

where: 

kF : Kalman state transition matrix during period k; 

kB : The control-input model of control vector 𝑢𝑘 during period k; 

: The observation matrix in the Kalman filtering during period k; 

: The measuring error ( ~ (0, )k ke R ) during period k; 

kH

ke

kw : The system white noise ( ~ (0, )k kw QF ) during period k; 

It is clear that all matrix and variables are of one dimension in this context. 

Even though the traffic systems on freeways and on arterials are nonlinear in nature, various 

successful linearization efforts have been reported in the past, such as the first-order traffic flow 

model due to Newell. Under the Kalman filter framework, if travel time is collected on freeways, 

0kB  since there are typically no control inputs. The ground truth travel times 𝑡𝑘, 𝑡𝑘−1 from period 

k-1 to period k is considered primarily affected by the volume changes and so we can derive 

theoretical travel time difference as ∆𝑡 = 𝑡𝑘−𝑡𝑘−1 based on Eq. (1). For simplicity, we further 

assume 𝑡𝑘 = 𝑡𝑘−1 + ∆𝑡 in the predicting step of Kalman filter, where 𝑡𝑘−1 is the estimated travel ̂ ̂ 

time based on Wi-Fi MAC address matching in period k-1. 

In contrast, when travel time is collected on arterials, the ground truth travel time is affected not 

only by the volume changes but also by the signal timings at intersections between two Wi-Fi 

sensors. In essence, traffic signal control systems will reduce the road capacities along arterials 

and increase travel times. To address this feature, Eq. (1) is modified by replacing the saturation 
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rate s with effective arterial road capacity c shown in Eq. (14). With Eq. (1) and Eq. (14), it is 

possible to predict the travel time 𝑡𝑘 = 𝑡𝑘−1 + ∆𝑡 in which both 𝐹𝑘 and 𝐵𝑘 are implicitly ̂ 

considered. Note that if the signal timing is not changed from period k-1 to period k, then ∆𝑡 is 

calculated the same as on freeways. 

𝑠×𝑔𝑖𝑐 = 𝑚𝑖𝑛 ( ) (𝑖 = 1,2, … , 𝑁) (14) 
𝐶𝑖 

According to the Traffic Engineering Handbook (22), the 97.5th percentile and 2.5th percentile 

freeway travel speeds are typically about 14.7 feet/second (10 miles per hour) above and below 

the average speed, respectively.  The corresponding link travel times can be calculated as 𝑡2.5% = 

𝐿 𝐿 
and 𝑡97.5% = (units are feet and seconds). Therefore, kQ in 𝑤𝑘 (the system 

𝑢+10×1.47 𝑢−10×1.47 

noise) in Eq. (13) is calculated as: 

( )97.5% 2.5%

0.0252*
t

t t

z
s

-
= (15) 

where: 

 0.025z can be obtained from the normal distribution table and its value is 1.96; 

In Eq. (13), kR (or ke ) is determined by the Wi-Fi sensor’s total measurement errors discussed 

before and 1kH = as the travel time is directly measured. After all the parameters are determined, 

estimating travel time can be described below in Algorithm 1: 

Lastly, smoothing method as in Eq. (11) is applied again to mitigate the issue of too small sample 

sizes within one sampling period. 
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Algorithm 1: Travel time estimation based on Kalman filter framework 

Assume there are km valid travel time samples, 
i

kz (i=1, 2…, 
km ) collected during period k 

0k =
𝐿 

Step 0: Initialization: when (e.g., midnight), 𝑡0 = , kw ’s variance 
0kQ =

is calculated with Eq. (15);
𝑢𝑓 

Step 1: for period k (k=1, 2 …), predict a priori estimation 

Step 1.1: Predict the travel time with Eq. (1) and (14) as the priori estimation; 

Step 1.2: estimate variance: 
1k k kP P Q-

-= + ; 

( )
1

k k k kK P P R
-

- -= - ( kRStep 2: Calculate the Kalman gain: is the variance of measure errors) 

Step 3: Update 

Step 3.1: update a posteriori state estimate: �̂� = �̂� − �̂�−)𝑘 𝑘
− + 𝐾𝑘(𝑧𝑘

𝑖 
𝑘 

Step 3.2: covariance update: ( )1k k kP K P-= -

Step 4: if i< km , then i=i+1 go to step 3; otherwise i=0, k=k+1 and go to Step 2 

Step 5: if i< km , algorithm stops and the final travel time is retrieved as the estimate travel time during period k 

5. Performance evaluation of Wi-Fi sensors in travel time estimations 

5.1 Case One: travel time estimation in moderate traffic condition in Tempe, Arizona 

A road segment along the Apache Blvd in Tempe, Arizona was selected to evaluate the 

performance of travel time estimation with captured Wi-Fi MAC addresses on October 2nd 

(Sunday), 2016. FIG.3-a shows two locations of road-side Wi-Fi MAC address collectors. The 

distance between two Wi-Fi road-side sensors is about 2,330 feet and the speed limit is 51 

feet/second (35 miles per hour) and therefore the free-flow travel time between two collectors is 

around 45 seconds. There are several traffic signals between two Wi-Fi sensors and vehicles’ 

actual travel times was longer than the free-flow travel time because of traffic. FIG. 3-b shows the 

traffic counts (east bound) for every 15 minutes. The background traffic along the Apache Blvd 

on that day was moderate and we observed that the green time was most assigned to the mainline. 

Therefore we ignored the impact of traffic signal control on the travel times for this case study. 
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Location 1 Location 2

-1dbi gain antenna -2dbi gain antenna

a b 

FIGURE 3 Locations of two Wi-Fi MAC collectors and two types of Wi-Fi antennas 

The main objectives of this experiment include: examining the capability of capturing in-vehicle 

Wi-Fi MAC address of passing vehicles under various antenna configurations (-2dbi and -1dbi 

omni-direction antennas); examine the performance of proposed algorithms to filter outlier 

samples and estimate travel time over time. 

The data collecting started at 10 AM on Oct-2nd, 2016 and lasted until 5:50 PM on the same day. 

The Wi-Fi antennas of both Wi-Fi MAC collector was first installed with the type of -3dbi omni-

direction and then replaced with the -2dbi omni-direction antennas. According to FIG. 2, the 

maximum sensing radius for first antenna is 50 meters (164 feet) while the maximum sensing 

radius for the 2nd antenna is 30 meters (98 feet). The distributions of measuring errors under two 

types of antennas can be estimated according to Eq. (4) - (7) accordingly which will be used in 

estimating travel times with the Kalman filter framework later. 

Wi-Fi MAC Capturing at one location (Vehicle presence data): The raw data collected by the Wi-

Fi sensors were locally archived in a format of “Wi-Fi MAC address, epoch time” and then post 

processed. The first step of data processing was to identify how effective the Wi-Fi sensors could 

capture the nearby Wi-Fi MAC addresses. FIG. 4 shows the number of captured Wi-Fi MAC 

address in 5 minutes. Note that the antennas were replaced from -2dbi to -1dbi at 2 PM to reduce 

the sensing radius by 50%. From FIG. 4, it is clear that the number of captured Wi-Fi MAC 

addresses was only slightly reduced or not reduced at all after such changes. This makes sense 

because the scanning speed of Wi-Fi sensors is up to 5 Hertz (5 times per second) and it could 

almost capture all the Wi-Fi MAC addresses of passing objects within very small time windows. 

In contrast, typical Bluetooth-based travel time estimation must use large-gain antennas to capture 

sufficient Bluetooth MAC addresses. This finding suggests that it is promising to reduce the 

positioning and timing errors in Wi-Fi-based travel time estimation through special antenna 
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configuration (e.g., low gain or directional) while the number of valid travel time samples is still 

enough for travel time estimation. 

FIGURE 4 captured Wi-Fi MAC address at two locations (5-min interval) 

Travel Time Matching and travel time estimation: the captured Wi-Fi MAC addresses at two 

locations are matched and screened according to the estimated upper and lower bounds. Then the 

travel time is estimated according to the proposed algorithm in this paper. FIG. 5 also shows some 

of the matched EB and WB travel time samples. Based on the several runs of floating vehicles 

during the experiment, the GPS travel time samples all fell into those 95% confidence intervals at 

the corresponding times. 

FIGURE 5 the number of valid travel time samples and estimated travel time over time 

There are no data of turning movements at intermediate intersections between two Wi-Fi sensors. 

Nonetheless, it was observed that many vehicles turned into the campus of Arizona State 

University at intermediate intersections between Wi-Fi sensors and the travel time sample rate 

ranged from 10% to 30% approximately compared with the through traffic volumes. 
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5.2 Case 2: performance comparison between Wi-Fi sensors and Bluetooth sensors in 

Starkville, Mississippi 

The purpose of this experiment it to conduct a cross comparison of the performance of the Wi-Fi 

sensors and Bluetooth sensors and it was conducted along the Highway 12 segment between 

Russel St. and Blackjack Rd. with the 45 MPH speed limit and 40 s free-flow travel time in 

Starkville, MS from 10:00 AM to 12: 00 PM (2 hours) on July 21st, 2017. Starkville has a relative 

low traffic during the summer and we count the two-direction arriving vehicles as 450 vehicles 

every 15 minutes during the experiment and the average observed speed is considerably slower 

than the speed limit. For the Wi-Fi sensors, we adopt 1dbi antennas and so the measuring error of 

travel time samples is about 2.0 s per location. For the Bluetooth sensors, we adopt a high-gain 

(5dbi) antennas in order to collect sufficient travel time samples and so its measuring error is about 

10 s per location. 

Sample Rate Comparison 

The sample rate is critical in travel time estimation, especially in low-traffic areas. FIG. 6 reveals 

the numbers of matched travel time samples under Wi-Fi sensors and Bluetooth sensors and we 

can see that the Wi-Fi sensors considerably outperform the Bluetooth sensors in capturing and 

matching MAC addresses in passing vehicles under the same traffic conditions. The sample rate 

of Wi-Fi sensors ranges from 7% to 16% while that of Bluetooth sensors is in the range from 0% 

to 2%. 

a b 

FIGURE 6 Travel time sample rates of Wi-Fi sensors and Bluetooth sensors 
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Travel Time Estimation 

With the proposed travel time estimation approach in this paper, the travel times as well as the 

boundary of 95% confidence interval are calculated every 5 minutes with the Bluetooth travel time 

samples and Wi-Fi travel time samples respectively. As revealed in FIG. 7, the Wi-Fi sensors are 

capable of capturing sufficient travel time samples in the low-traffic conditions and conduct good 

estimations. In contrast, the number of Bluetooth travel time samples are low in the low-traffic 

condition. Since there are no matched Bluetooth travel time samples in some time intervals, the 

proposed algorithm as in Eq. (11) will have to use the estimated travel time in the last sampling 

cycle (5 minutes in this context) and we can clearly tell the bias in the Bluetooth travel time 

estimation is considerably larger than the Wi-Fi travel time estimation. 

a b 
FIGURE 7 Travel time estimations with Bluetooth and Wi-Fi sensors 

6 Conclusion 

In this paper, we present a novel travel time estimation approach based on in-vehicle Wi-Fi MAC 

Capturing. To address two challenges in data processing: outlier screening and travel time 

estimation, we analyze the possible measuring errors of the proposed travel time estimation 

solution and then propose a Kalman-filter-based travel time estimation algorithm. To evaluate the 

performance of Wi-Fi sensors and to compare with the traditional Bluetooth sensors, two Wi-Fi 

MAC collectors and two Bluetooth sensors are built and deployed along two arterials in Arizona 

and Mississippi and to collect the Wi-Fi/Bluetooth MAC addresses in the passing vehicles. 

According to the experiments, we would like to draw the following conclusions: 

1. the Wi-Fi sensors can adopt short-range antennas without creating the issue of low sample 

rates; 
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2. Depending on the vehicle speeds and Wi-Fi antenna configurations, the measuring errors 

of Wi-Fi sensors range from 1 s to 5 s per location; 

3. The Wi-Fi sensors significantly outperform the Bluetooth sensors in capturing and 

matching travel time samples, especially in low-traffic areas. 

In the future, we plan to continue exploring the potential of Wi-Fi sensors for other purposes, such 

as estimating control delays or queue lengths using the matched travel time samples if vehicles’ 

presence times at locations of different Wi-Fi MAC collectors are synchronized with the high-

resolution traffic signal events. 
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